Saturday, September 26, 2009 Tags: 0 comments

'Glow-In-The-Dark' Red Blood Cells Made From Human Stem Cells

Victorian stem cell scientists from Monash University have modified a human embryonic stem cell (hESC) line to glow red when the stem cells become red blood cells.
The modified hESC line, ErythRED, represents a major step forward to the eventual aim of generating mature, fully functional red blood cells from human embryonic stem cells.
The research, conducted by a team led by Professors Andrew Elefanty and Ed Stanley at the Monash Immunology and Stem Cell Laboratories that included scientists at the Murdoch Children's Research Institute, was published in today's issue of the prestigious journal, Nature Methods.
The work, funded by the Australian Stem Cell Centre (ASCC), will help scientists to track the differentiation of embryonic stem cells into red blood cells.

How stem cells make's skin!!!

Stem cells have a unique ability: when they divide, they can either give rise to more stem cells, or to a variety of specialised cell types. In both mice and humans, a layer of cells at the base of the skin contains stem cells that can develop into the specialised cells in the layers above. Scientists at the European Molecular Biology Laboratory (EMBL) in Monterotondo, in collaboration with colleagues at the Centro de Investigaciones Energéticas, Medioambientales y Tecnologicas (CIEMAT) in Madrid, have discovered two proteins that control when and how these stem cells switch to being skin cells. The findings, published online today in Nature Cell Biology, shed light on the basic mechanisms involved not only in formation of skin, but also on skin cancer and other epithelial cancers
At some point in their lives, the stem cells at the base of the skin stop proliferating and start differentiating into the cells that form the skin itself. To do so, they must turn off the 'stem cell programme' in their genes and turn on the 'skin cell programme'. Researchers suspected that a family of proteins called C/EBPs might be involved in this process, as they were known to regulate it in other types of stem cell, but had so far failed to identify which C/EBP protein controlled the switch in skin. Claus Nerlov and his group at EMBL Monterotondo discovered it was not one protein, but two: C/EBPα and C/EBPβ
The EMBL researchers used genetic engineering techniques to delete the genes that encode C/EBPα and β specifically in the skin of mouse embryos, and found that without these proteins the skin of the mice did not form properly

Friday, September 18, 2009 Tags: , , 0 comments

Fabricated Genetic Fingerprints And The Limits Of Forensic Science


In CSI, the phenomenally successful television show about forensic science, DNA evidence is usually presented as something of a clincher. It's often said that a crime-scene sample that matches a suspect's genetic fingerprint leaves only a one in a million chance that he or she is innocent, and this sort of evidence is often among the most likely to convince judges and juries.

The police and the Home Office see it as so valuable and reliable that they want the Police National DNA Database to retain samples from people who are arrested but never convicted, even though the European Court of Human Rights has ruled this unlawful.

Since it was developed by Sir Alec Jeffreys in 1984, DNA fingerprinting has indeed helped to solve thousands of crimes, both convicting the guilty and exonerating the innocent. But valuable as it is, it is no more infallible than any other investigational tool. A fresh reason why has been highlighted this week by the New York Times, with a story suggesting that genetic evidence can easily be faked.

Popular Posts